Best proximity points for cyclic Kannan-Chatterjea- Ćirić type contractions on metric-like spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...

متن کامل

On Best Proximity Points in metric and Banach spaces

Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...

متن کامل

Best Proximity Point Result for New Type of Contractions in Metric Spaces with a Graph

In this paper‎, ‎we introduce a new type of graph contraction using a special class of functions and give a best proximity point theorem for this contraction in complete metric spaces endowed with a graph under two different conditions‎. ‎We then support our main theorem by a non-trivial example and give some consequences of best proximity point of it for usual graphs.

متن کامل

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

متن کامل

Best Periodic Proximity Points for Cyclic Weaker Meir-Keeler Contractions

Throughout this paper, by R we denote the set of all nonnegative numbers, while N is the set of all natural numbers. Let A and B be nonempty subsets of a metric space X, d . Consider a mapping f : A ∪ B → A ∪ B, f is called a cyclic map if f A ⊆ B and f B ⊆ A. A point x in A is called a best proximity point of f in A if d x, fx d A,B is satisfied, where d A,B inf{d x, y : x ∈ A,y ∈ B}, and x ∈ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.05.45